Professor of RNA Virology
Head of Division of Virology
Translational control
Ribosomal frameshifting and readthrough
Virus gene expression
RNA structure and function
University of Cambridge
Tennis Court Road
Cambridge
CB2 1QP
Biography:
Following a PhD at the University of York, where I studied transcriptional activation and DNA bending of cyclic AMP receptor protein-responsive promoters under the supervision of Jim Hoggett, I have worked in Cambridge, focusing principally on the role of RNA structures in the translational regulation of gene expression, using viruses as model systems. Most of my publications concern protein synthesis, especially the phenomenon of ribosomal frameshifting, a translational regulatory event employed by numerous viral and some cellular genes. The work includes the first demonstration of a role for RNA pseudoknots in the regulation of translational elongation (Cell 57, 537-547, 1989), the development of an exogenous tRNA-dependent rabbit reticulocyte lysate system (RNA 7, 765-773, 2001), the description of novel translational recoding events in cellular genes (Molecular Cell 13, 157-168, 2004; Nucleic Acids Res. 33, 1553-1563, 2005), the first visualisation of mammalian ribosomes stalled during translocation (Nature 441, 244-247, 2006) and the first demonstration of -2 frameshifting at a viral frameshifting signal (Nucleic Acids Res. 40, 8674-8689, 2012). The Department of Pathology at the University of Cambridge provides excellent research facilities and a broad expertise in virology/molecular cell biology. Presently, our work focuses on protein-dependent ribosomal frameshifting signals and ribosome profiling of virus-infected cells (detailed in Research Interests section).
Research themes
- Virology:
-
Translational control of virus gene expression.
RNA structure and function.
Division
Research Interests
- Cryo-EM image of ribosomal-stalling at a frameshift-promoting RNA pseudoknot (purple). Shown are 40S subunit (yellow), bent tRNA (green) and associated eEF2 (red; Namy 2006 Nature 441 p244ff).
We are studying frameshifting and readthrough using coronaviruses and retroviruses as model systems. A frameshift signal has two elements, a "slippery sequence" where the ribosome enters the new reading frame, followed, in most cases, by an mRNA structure, often an RNA pseudoknot. A bipartite signal is also employed in readthrough but here, the pseudoknot induces suppression of an upstream stop codon. Recently, we have also identified novel signals where there is no stimulatory RNA structure and frameshifting is stimulated by the binding of trans-acting proteins. Our aim is to determine the mechanism by which these stimulatory signals induce the ribosome to change frame/misread the stop codon. Further, we are interested in gaining an understanding of RNA pseudoknot structure and function. The pseudoknot motif has been described in all cellular RNAs described to date and pseudoknots are clearly key regulatory RNA elements. Projects are underway to study
(1) Transacting factors, both protein and RNA, which influence frameshifting/readthrough (2) the structure of frameshift and readthrough stimulatory RNAs and proteins (3) ribosome conformation during frameshifting/readthrough (4) the effect on virus replication of altering frameshift/readthrough efficiencies.
We are also using the technique of ribosome profiling to globally-analyse RNA virus translation and virus-host responses. We are particularly interested in identifying novel examples of translational control.
- Research Associates:
Sawsan Napthine, Chris H. Hill - Graduate Students:
Georgia M. Cook
Collaborators
Key Publications
1. Napthine S, Ling R, Finch LK, Jones JD, Bell S, Brierley I, Firth AE. (2017). Protein-directed ribosomal frameshifting temporally regulates gene expression. Nature Commun. 8, 15582.
2. Napthine S, Treffers EE, Bell S, Goodfellow I, Fang Y, Firth AE, Snijder EJ, Brierley I. (2016). A novel role for poly(C) binding proteins in programmed ribosomal frameshifting. Nucleic Acids Research 44, 5491-5503. (Breakthrough Article).
3. Irigoyen N, Firth AE, Jones JD, Chung BY, Siddell SG, Brierley I. (2016). High-resolution analysis of coronavirus gene expression by RNA sequencing and ribosome profiling. PLoS Pathog. 12:e1005473.
4. Chung B, Hardcastle T, Jones J, Irigoyen N, Firth A, Baulcombe D, Brierley I. (2015). The use of duplex-specific nuclease in ribosome profiling and a user-friendly software package for Ribo-Seq data analysis. RNA, 21:1731-1745.
5. Csibra E, Brierley I, Irigoyen N. (2014). Modulation of stop codon read-through efficiency and its effect on the replication of murine leukemia virus. J. Virol. 88:10364-76.
6. Li Y, Treffers EE, Napthine S, Tas A, Zhu L, Sun Z, Bell S, Mark BL, van Veelen PA, van Hemert MJ, Firth AE, Brierley I, Snijder EJ, Fang Y. (2014). Transactivation of programmed ribosomal frameshifting by a viral protein. Proc. Natl. Acad. Sci. U S A. 111:E2172-81.